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Abstract

We provide a uni�ed explanation for a number of index option anomalies: the implied

volatility puzzle, the overreaction of long-term options to changes in short-term variance,

and the fat tails of the risk-neutral return distribution relative to the physical distribution.

We explain these anomalies in terms of a pricing kernel that depends on variance. Although

the pricing kernel is a monotonic function of stock return and variance, it is U-shaped in

returns after projecting variance on returns. This non-monotonicity is supported by semi-

parametric evidence from returns and option data. We incorporate this feature into the

Heston-Nandi (2000) model and estimate the resulting model using a loss function with an

options component and a returns component. The model signi�cantly improves on the �t

of a model with a traditional Black-Scholes-Rubinstein pricing kernel, and the di¤erences

between physical and risk-neutral moments are similar to those of an ad-hoc model that is

designed to �t both distributions separately.
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1 Introduction

The literature on index option valuation has provided some signi�cant improvements to the clas-

sical Black-Scholes setup. Most importantly, modeling stochastic volatility and incorporating a

leverage e¤ect reduce pricing error (see for example Bakshi, Cao and Chen, 1997). However,

signi�cant challenges remain. More than a decade ago, Bates (1996a) observed that �the cen-

tral empirical issue in option research is whether the distributions implicit in option prices are

consistent with the time series properties of the underlying asset prices.�While subsequent stud-

ies have addressed this issue, it has proved di¢ cult to reconcile the empirical distributions of

spot returns with the risk-neutral distributions underlying option prices. This is a particularly

acute puzzle, because the fundamental theorem of asset pricing states that absence of arbitrage

guarantees the existence of a nonnegative pricing kernel that relates risk-neutral probabilities to

true probabilities. The inability of existing pricing kernels to explain option prices may there-

fore suggest arbitrage, and more general pricing kernels that can capture these stylized facts are

needed.

Moreover, several persistent empirical puzzles have emerged from the options literature. The

most often discussed puzzle is that volatilities implied from option prices tend to exceed realized

volatility. This puzzle is well-known and understood in terms of a negative price of variance risk.

For instance, Bakshi and Kapadia (2003) show that average returns on variance-sensitive option

portfolios are indeed negative. Another variance puzzle is the expectations puzzle, which concerns

the relationship of implied volatility to expected future volatility. Generally, implied variances

do not provide an unbiased forecast of subsequent variance.1 Moreover, Stein (1989) shows that

long-term implied variance overreacts to changes in short-term variance. This puzzle involves

movements in the term structure of implied volatility and is related to the expectations puzzle.

Taken together, these anomalies indicate misspeci�cation in the dynamic relationship between

option values and the time series of spot returns. They are usually not discussed in the context of

a parametric framework, and therefore the literature has not necessarily explicitly linked them to

Bates�statement, but they are intimately related. In addition to these longitudinal expectations

puzzles, available models have di¢ culty explaining the cross-section of option prices, particularly

the prices of out-of-the-money options. Several studies have recognized that this evidences a

�pricing kernel puzzle�in the sense that available pricing kernels may not be general enough to

explain option data. See for instance Brown and Jackwerth (2001), Bates (2008), and Bakshi,

Madan, and Panayotov (2009).

Together the expectations puzzles, the overreaction puzzle, and the pricing kernel puzzle pose

1See Day and Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Jorion (1995),
Fleming (1998)), Blair, Poon and Taylor (2001), and Chernov (2007) among others.
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a collective challenge to option models. This paper attempts to provide a uni�ed explanation

for these puzzles by studying a pricing kernel that is more general than standard pricing kernels

that are monotonic in market returns, and analyzing its implications for each of the stylized facts

mentioned above.

We start by presenting new semi-parametric evidence on the conditional pricing kernel. The

natural logarithm of the conditional pricing kernel appears to be a U-shaped function of returns,

and that this function is relatively stable over time. We address this by incorporating variance

risk in the pricing kernel. In our model, the pricing kernel speci�cation is monotonic in returns

and also monotonic in volatility. The key is that volatility tends to be high when the stock

return is very large or very negative. Consequently the pricing kernel is a U-shaped function

of the stock return after projecting the volatility e¤ect onto returns. The pricing kernel also

explains the other anomalies in terms of a volatility risk premium. A negative risk premium for

volatility can explain why implied volatilities are high and average option returns are low. It

is important that the magnitude of this (negative) risk premium grows as volatility rises. This

ampli�es the movements of long term option values in response to short-term �uctuations in

volatility. The pricing kernel therefore can explain why long-maturity implied volatilities appear

to overreact to temporary increases in volatility, thereby explaining Stein�s (1989) observation.

These analytical results indicate that the suggested pricing kernel is able to qualitatively

account for a number of important puzzles. In order to demonstrate that these implications

are quantitatively important, as well as to verify whether the new kernel speci�cation is �exible

enough to resolve the dichotomy between option prices and the time series of underlying index

returns pointed out by Bates (1996a), we conduct an empirical analysis that uses an objective

function with a return component and an option component. We use an option dataset that is

substantially larger than existing studies, maximizing a likelihood function that consists of the

sum of the return likelihood and a likelihood based on option prices. We generalize the Heston-

Nandi (2000) GARCH model to include a more general pricing kernel that generates a variance

premium. The variance risk premium contains two components: one is related to the equity risk

premium, while the other is an independent component that originates in volatility preferences.

The discrete-time structure of the model greatly facilitates the �ltering problem, and makes it

possible to maximize the likelihood with the return and option components. In this model the

logarithm of the pricing kernel is a quadratic function of the market return.

We �rst estimate the model without imposing the restrictions between the physical and risk-

neutral parameters, in order to have an ad-hoc benchmark that �ts both components of the data

as well as possible. We then estimate the model while imposing the restrictions from our new

pricing kernel, as well as using the more restrictive traditional pricing kernel.

The empirical results are quite striking. Imposing the new pricing kernel with the variance
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risk premium dramatically improves model �t compared to a traditional pricing kernel with

equity risk only. The new model reduces valuation biases across strike price and maturity,

and the resulting �t is reasonably close to that of the unrestricted ad-hoc model. The new

pricing kernel adequately captures the volatility premium between the physical and risk-neutral

volatility, as well as the di¤erences between the physical and risk-neutral volatility of variance.

While the estimated persistence of risk-neutral variance is larger than the persistence of physical

variance, the di¤erence is smaller than in the ad-hoc model, indicating that the new pricing

kernel qualitatively captures this stylized fact, but quantitatively falls short. Presumably this is

due to the fact that capturing variance persistence is not heavily weighted in the likelihood.

A number of existing studies on option valuation and general equilibrium modeling are related

to our �ndings. Several studies have argued that modi�cations to standard preferences are needed

to explain option data. See for instance Bates (2008), Pan (2002), Benzoni, Collin-Dufresne, and

Goldstein (2005), and Liu, Pan and Wang (2004). Ait-Sahalia and Lo (2000) and Jackwerth

(2000) have noted the surprising implications of option prices for risk-aversion, and Shive and

Shumway (2006) suggest using non-monotonic pricing kernels. Rosenberg and Engle (2002) and

Chernov (2003) document nonmonotonicities in pricing kernels using parametric assumptions

on the underlying returns. Chabi-Yo (2009) uses Taylor series expansions of marginal utilities

and documents nonmonotonicities after projecting on the market return. Brown and Jackwerth

(2001) argue that in order to explain option prices, the pricing kernel needs a momentum factor.

Bollerslev, Tauchen, and Zhou (2009) show that incorporating variance risk in the pricing kernel

can explain why option volatilities predict market returns. Bakshi, Madan, and Panayotov (2009)

show that the prices of S&P500 calls are inconsistent with monotonically declining kernels, and

motivate U-shaped pricing kernels using a heterogeneous agent economy. They also show that

the mimicking portfolio for the pricing kernel is U-shaped.

The paper is organized as follows. Section 2 discusses a number of existing stylized facts and

also presents new evidence on the shape of the conditional pricing kernel. Section 3 presents the

theory of the variance risk premium and the corresponding pricing kernel. Section 4 presents

a new discrete-time model incorporating this kernel, which is used in our empirical work. Sec-

tion 5 presents the empirical results and Section 6 concludes. The Appendix collects proofs of

propositions.

2 Stylized Facts in Index Option Markets

We start by documenting and analyzing a number of well-known and lesser-known stylized facts

in option markets. We pay particular attention to the shape of the pricing kernel implied by

option data. We �rst discuss the option and return data used in the empirical analysis.
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2.1 Data

Our empirical analysis uses out-of-the-money S&P500 call and put options for the 1996-2004

period from OptionMetrics. Rather than using a short time series of daily option data, we use

an extended time period, but we select option contracts for one day per week only. This choice

is motivated by two constraints. On the one hand, it is important to use as long a time period

as possible, in order to be able to identify key aspects of the model. See for instance Broadie,

Chernov, and Johannes (2007) for a discussion. On the other hand, the optimization problems

we conduct are very time-intensive. The size of our option sample is unique in the literature, and

limiting the number of options reduces the computational burden. Picking one day per week is

a useful compromise. We use Wednesday data, because it is the day of the week least likely to

be a holiday. It is also less likely than other days such as Monday and Friday to be a¤ected by

day-of-the-week e¤ects. Moreover, following the work of Dumas, Fleming and Whaley (1998) and

Heston and Nandi (2000), several studies have used a long time series of Wednesday contracts.

Table 1 presents descriptive statistics for the option data by moneyness and maturity. Mon-

eyness is de�ned as implied futures price F divided by strike price X. When F=X is smaller

than one, the contract is an OTM call, and when F=X is larger than one, the contract is an

OTM put. The out-of-the-money put prices were converted into call prices using put-call parity.

The sample includes a total of 21,391 option contracts with an average mid-price of $28.42 and

average implied volatility of 21.47%. The implied volatility is largest for the OTM put options,

re�ecting the well-known volatility smirk in index options. The average implied volatility term

structure is roughly �at during the period.

Table 1 also presents descriptive statistics for the return sample. The return sample is from

January 1, 1990 to December 31, 2005. It is longer than the option sample, in order to give returns

more weight in the optimization, as explained in more detail below. The standard deviation of

returns, at 16.08%, is substantially smaller than the average option-implied volatility, at 21.47%.

The higher moments of the return sample are consistent with return data in most historical

time periods, with a very small negative skewness and substantial excess kurtosis. Table 1 also

presents descriptive statistics for the return sample from January 1, 1996 to December 31, 2004,

which matches the option sample. In comparison to the 1990-2005 sample, the standard deviation

is somewhat higher. Average returns, skewness and kurtosis in the subsample are very similar to

the 1990-2005 sample.

5



2.2 Returns on Straddles

It is well-known that on average, risk-neutral volatility exceeds physical volatility.2 Several

authors have argued that the risk premium that explains this di¤erence makes it interesting to

short sell straddles.3 Figures 1 and 2 illustrate these stylized facts using the 1996-2004 option

sample from Table 1. Figure 1 illustrates that risk-neutral volatility exceeds physical volatility,

as �ltered by a GARCH process. This stylized fact is robust to a large number of variations

in the empirical setup, such as for instance measuring the physical volatility using a di¤erent

�lter, or using realized volatility instead of GARCH volatility. Figure 2 illustrates the returns

and cumulative returns of a short straddle strategy, which for simplicity are computed using the

nearest to at-the-money nearest to 30-day maturity call and put option on the third Friday of

every month. The options are held until maturity, the cash accounts earns the risk-free rate,

and the index starts out with $100 in cash on January 1, 1996. The dashed line in Figure 2

plots the S&P500 monthly closing price normalized to 100 in January 1996 for comparison. It

is obvious from Figure 2 that the short straddle strategy was very rewarding in the 1996-2004

period, especially in periods when the S&P500 performed well. In the Black-Scholes model, the

average return on this strategy would be approximately zero, and the strategy�s returns would

not be correlated with market returns.

2.3 The Overreaction Hypothesis

Stein (1989) documents another stylized fact in option markets that is equally robust, but has

attracted somewhat less attention. He demonstrates using a simple regression approach that

longer-term implied volatility overreacts to changes in shorter-term implied volatility. Stein�s

most general empirical test, which is contained in Table V of his paper, is motivated by the

restriction

Et
�
(IV STt+(LT�ST ) � IV STt )� 2(IV LTt � IV STt )

�
= 0; (1)

where IV LTt is the implied volatility of a long-term option and IV STt is the implied volatility of a

short-term option that has half the maturity of the long-term option. Intuitively, this says that

the slope of the term structure of implied volatility is equal to one half of the expected change in

implied volatility. This restriction can be tested by regressing the time series in brackets on the

left hand side on current information. Stein (1989) regresses on IV STt and �nds a negative sign,

which is consistent with his overreaction hypothesis, as well as with his other empirical results.

When the term structure of implied volatility is steep, then future implied volatilities tend to be

2See for instance Bates (2000, 2003), Broadie, Chenov, and Johannes (2007), Chernov and Ghysels (2000),
Eraker (2004), Heston and Nandi (2000), Jones (2003), and Pan (2002).

3See among others Coval and Shumway (2001), Bondarenko (2003), and Driessen and Maenhout (2007).
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below the forward forecasts implied by the term structure of volatility. In other words, long-term

options seem to overreact to changes in short-term volatility.

We follow Stein�s implementation of (1), using weekly time series of one-month and two-month

implied volatilities. The regression is

(IV 1Mt+4 � IV 1Mt )� 2(IV 2Mt � IV 1Mt ) = a0 + a1IV
1M
t + et+4;

where 2M and 1M denote 2-month and 1-month maturity, and we test the null hypothesis that

a1 = 0:

Table 2 presents the results for the Stein regression using the 1996-2004 option data. Re-

member that the frequency of the time series of implied volatilities is weekly, as in Stein (1989),

making our results directly comparable to his. We use options that are at-the-money, accord-

ing to the de�nition used in Table 1. Rather than averaging the two contracts that are closest

to at-the-money, we �t a polynomial in maturity and moneyness to all option contracts on a

given day, and then interpolate in order to obtain at-the-money implied volatility for the desired

maturities. This strategy eliminates some of the noise from the data.

Table 2 demonstrates convincingly just how robust Stein�s results are. We run the regressions

�rst for the full sample 1996-2004, and subsequently for nine sub-samples, one for each of the

years in the sample. We �nd a highly signi�cant negative sign in all ten cases.

Stein (1989) interprets this stylized fact as an anomaly. Long-term options overreact to short-

term �uctuations in implied volatility, even though volatility shocks decay very quickly. Stein

(1989) therefore argues that this is a violation of rational expectations. We argue that this robust

stylized fact does not signal an anomaly. In fact, it is entirely consistent with rational behavior,

and moreover it is perfectly consistent with a wealth of other existing empirical evidence. We

discuss this further below when we introduce the model.

2.4 Fat Tails and Fatter Tails

The most challenging outstanding puzzle about equity index option markets concerns the relation

of the risk-neutral distribution of the stock price to the physical distribution. Stochastic volatility

models emerged as workhorses in the option literature because they were able to model fat tails

and volatility smiles and smirks.4 However, Bates (1996b, 2003), Ait-Sahalia and Lo (1998,

2000), and Jackwerth (2000) document that the risk-neutral distribution has fatter tails than

the empirical distribution. Many studies attempt to address this stylized fact with increasingly

complex models for the underlying dynamic, including non-normal innovations, jump processes,

4See Hull and White (1987), Melino and Turnbull (1990), Wiggins (1987), and Heston (1993) for examples of
option valuation with stochastic volatility.
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and multiple factors, but there seems to be consensus in the literature that these models do

not necessarily resolve the problem that the fatness of the tails dramatically di¤ers between

the physical and risk-neutral distribution.5 Despite these recent innovations in the modeling of

underlying index returns, we do not have a model that convincingly captures the stylized facts

of the physical as well as the risk-neutral distributions.

In order to capture this stylized fact, what is needed is risk-neutral conditional and uncondi-

tional skewness and kurtosis that exceed their physical counterparts. While it may be possible

to do so with a more general or �exible return speci�cation, we argue in this paper that it is

more productive to directly focus on the pricing kernel that links the physical and risk-neutral

distributions.

Our strategy is to guide the search for the appropriate pricing kernel by another robust

stylized fact, which has not yet been extensively explored in the literature. We document that

the conditional pricing kernel is U-shaped as a function of returns. The logic underlying the

Capital Asset Pricing Model explains why the pricing kernel is high when stock index returns

are low, but is incompatible with a non-monotonic stochastic discount factor. Yet the logic

underlying the Capital Asset Pricing Model is implicitly present in almost all existing empirical

studies of index option pricing.

We therefore present an option pricing model with a modi�ed pricing kernel. The underlying

motivation and logic are simple. In the presence of stochastic volatility, the stochastic discount

factor is an exponential-linear function of the variance. In contrast to the price of equity risk, we

anticipate the price of volatility risk to be negative. In this case the stochastic discount factor

will be an exponentially increasing function of future variance. In other words the bivariate

stochastic discount factor is monotonic in both the stock return and in the variance. However,

to address the Bates (1996a) puzzle, we turn our attention to the projection of the stochastic

discount factor on the univariate stock return. When the variance is large, stock index returns

tend to be very high or very low. This means that the projection of the variance risk premium

component of the stochastic discount factor onto the stock returns may be a U-shaped function of

the stock return. We document that this is indeed the case empirically, and that allowing for this

possibility radically improves the model�s ability to jointly �t the physical and the risk-neutral

distribution.
5Andersen, Benzoni, and Lund (2002), Bakshi, Cao and Chen (1997), Bates (1996b, 2000, 2006), Broadie,

Chernov, and Johannes (2007), Chernov and Ghysels (2000), Eraker (2004), Eraker, Johannes, and Polson (2003),
and Pan (2002) investigate jumps in returns. Broadie, Chernov, and Johannes (2007), Eraker (2004), and Eraker,
Johannes, and Polson (2003) estimate models with additional jumps in volatility. Bates (2009), Carr and Wu
(2004) and Huang andWu (2004) investigate in�nite-activity Levy processes. Bates (2000), Christo¤ersen, Heston,
and Jacobs (2009) and Christo¤ersen, Jacobs, Wang, and Ornthanalai (2008) investigate multifactor stochastic
volatility models. Christo¤ersen, Heston, and Jacobs (2006) propose heteroskedastic models with non-normal
innovations.
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It is useful to contrast this underlying logic with the intuition underlying stochastic volatility

models, which are able to accommodate fat tails. High volatility tends to be associated with

very high or very low stock returns. Therefore stochastic volatility models tend to produce fat

tails, but they do so for both the physical and the risk-neutral distribution of stock returns. This

produces the familiar �volatility smile� in option values relative to the Black-Scholes formula.

Our approach does not merely address the stylized fact of fat tails. It explains why the tails of

the risk-neutral distribution are fatter than the tails of the physical distribution. In other words,

it explains the magnitude of the risk-neutral smile, and decomposes it into a component that

is also present in the tails of the physical volatility and a component that is explained by the

pricing kernel.

2.5 Retrieving Conditional Densities and Pricing Kernels

We now document the shape of the conditional pricing kernel using semiparametric methods.

The literature does not contain a wealth of evidence on this issue. Much of what we know is

either entirely (see for instance Bates, 1996b) or partly (Rosenberg and Engle, 2002) �ltered

through the lens of a parametric model. Several papers study risk-neutral and physical densities.

Jackwerth (2000) focuses on risk aversion instead of the (obviously related) shape of the pricing

kernel. Ait-Sahalia and Lo (2000, p. 36) provide a picture of the pricing kernel as a by-product

of their analysis of risk aversion, but because of their empirical technique, their estimate is most

usefully interpreted as an unconditional pricing kernel. Our focus is on the conditional pricing

kernel. Shive and Shumway (2006) and Bakshi, Madan, and Panayotov (2009) present the most

closely related evidence on the conditional pricing kernel, but our conditioning approach is very

di¤erent.

It is relatively straightforward to estimate the risk-neutral density of returns using option

data, harnessing the insights of Breeden and Litzenberger (1978) and Banz and Miller (1978),

and there is an extensive empirical literature reporting on this. Ait-Sahalia and Lo (2000) obtain

non-parametric estimates of the risk-neutral density or state-price density. This necessitates

combining option data on di¤erent days, because non-parametric methods are very data intensive.

Other papers, such as Jackwerth and Rubinstein (1996), Jackwerth (2000), Rubinstein (1994),

Bliss and Panigirtzoglou (2004), Rosenberg and Engle (2002), and Rompolis and Tzavalis (2008)

use option data on a single day to infer risk-neutral densities, using a variety of methods.

Our objective is to stay as nonparametric as possible, but to provide evidence on the condi-

tional density. We therefore need to impose a minimum of parametric assumptions. We proceed

as follows. Using the entire cross-section of options on a given day, we �rst estimate a polynomial

function of implied Black-Scholes volatility as a function of moneyness and maturity. Using this
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estimated polynomial, we then generate a grid of at-the-money implied volatilities for a desired

grid of strikes. Call these generated implied volatilities �̂ (S (t) ; X; �). Call prices can then be

obtained using the Black-Scholes functional form.

Ĉ (S (t) ; X; � ; r) = CBS (S (t) ; X; � ; r; �̂ (S (t) ; X; �)) : (2)

Following Breeden and Litzenberger (1978), the risk neutral density for the spot price on the

maturity date T = t + � is calculated as a simple function of the second derivative of the

semiparametric option price with respect to the strike price

f̂ �t (S (T )) = exp (r)

"
@2Ĉ (S (t) ; X; � ; r)

@X2

#
jX=S(T )

: (3)

We calculate this derivative numerically across a grid of strike prices for each horizon, setting

the current interest rate to its average sample value.

Finally, in order to plot the density against log returns rather than future spot prices, we use

the transformation

f̂ �t (R (t; T )) =
@

@u
Pr

�
ln

�
S (T )

S (t)

�
� u

�
= S (t) exp (u) f̂ �t (S (t) exp (u)) : (4)

The resulting densities are truly conditional because they only re�ect option information for that

given day.

It is much more challenging to construct the conditional physical density of returns. Avail-

able studies walk a �ne line between using short samples of daily returns, which makes the

estimate truly conditional, and using longer samples, which improves the precision of the esti-

mates. Ait-Sahalia and Lo (1998) use a relatively long series because they are less worried about

the conditional nature of the estimates. Jackwerth (2000) uses one month worth of daily return

data because he wants to illustrate the time-varying nature of the conditional density. We use

a somewhat di¤erent approach. We discuss the case of monthly returns, which is used in the

empirical work, but the method can easily be applied for shorter- or longer-maturity returns.

Because we want to estimate the tails of the distribution as reliably as possible, we use a

long daily time series of the natural logarithm of one-month returns, from January 1, 1990 to

December 30, 2005. A kernel-smoothed histogram based on this time series is e¤ectively an

estimate of the unconditional physical density of one-month log returns. We obtain a conditional

density estimate for a given day, f̂t (R (t; T )) ; by normalizing the return series by dividing by

the conditional volatility on that day, as measured by the VIX.

A subset of the resulting physical and risk-neutral conditional densities are given in Figure
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3. Recall that our sample consists of nine years worth of option data, for 1996-2004, and that

we use Wednesday data only when we estimate the models. We conduct the estimation of the

conditional densities for each of the Wednesdays in our sample, which is straightforward to

execute. We cannot report all these results because of space constraints. In order to show the

time variation in the conditional densities, and the appeal of our method, Figure 3 presents nine

physical and nine risk-neutral conditional densities, one for the �rst Wednesday of each year in

our sample. The sample year is indicated in the title to each graph. The horizontal axis indicates

annualized log returns.

These results are interesting from two perspectives. First, they illustrate that the conditional

densities signi�cantly change through time. The shapes of both the physical and the risk-neutral

densities vary substantially over the years. Second, given these changes, it is remarkable that

for each of the nine cases, the physical and the risk neutral density track each other rather

closely. Given that estimation of the risk-neutral conditional density is straightforward, this

result indicates the appeal of our simple estimation procedure for the physical conditional density.

Figure 3 clearly demonstrates the fat left tail of the risk-neutral conditional density, compared

with that of the physical density. This �nding is robust despite the fact that the conditional

densities look very di¤erent across the years. This stylized fact gives rise to risk neutral model

estimates that display excess kurtosis and excess negative skewness in comparison to physical

estimates.

Figure 4 depicts the natural logarithm of the ratio of the weekly conditional 1-month risk-

neutral and conditional physical density. We want to investigate the natural logarithm of the

pricing kernel at di¤erent levels of return. As in Figure 3, we present nine sets of results, one

for each year of the sample. Recall that in Figure 3 we only present results for the �rst week of

each year, in order to illustrate the time-varying nature of the conditional density. Plotting the

densities for all 52 weeks in a given year would make the �gure unwieldy. In Figure 4, because

the densities move together, we are able to present more information and plot results for all

weeks of the year on each picture. Speci�cally, we plot

ln
�
f̂ �t (R (t; T )) =f̂t (R (t; T ))

�
; for t = 1; 2::; 52

In each week we trimmed 3% of observations in the left and right tails, because these observations

are sometimes very noisy. In order to let the data speak we did not kernel-smooth the historical

return distributions as in Figure 3.

Three very important conclusions obtain. First, the pricing kernel is clearly not a monotonic

function of returns, rejecting a hypothesis implicit in the Black-Scholes model and much of

the option pricing literature. Second, the natural logarithm of the pricing kernel can be well
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approximated by a quadratic function of stock returns, supporting the approach taken in this

paper. Third, the shape of the pricing kernel is remarkably stable across time. It is evident

that the shape of the pricing kernel varies somewhat across certain years. For instance, the 1998

kernel is di¤erent from the 1996 kernel, and by 2004 the kernel again looks similar to the 1996

kernel. But we are able to draw the �fty-two pricing kernels generated for a given year on one

picture to clearly illustrate the quadratic nature of the kernel. If the kernel varied more within

the year, Figure 4 would contain nothing but a cloudy scatterplot without much structure. In

summary, Figure 4 clearly illustrates that the logarithm of the pricing kernel is roughly quadratic

as a function of the return, and that this pricing relationship is stable over time.

3 Theory of the Variance Risk Premium

Consider the Heston (1993) model for the dynamics of the spot price S (t)

dS (t) = (r + �v(t))S (t) dt+
p
v(t)S (t) dz1(t); (5)

dv(t) = �(� � v(t))dt+ �
p
v(t)

�
�dz1(t) +

p
1� �2dz2(t)

�
;

where r is the risk-free interest rate and where z1(t) and z2(t) are independent Wiener processes.

The notation in (5) emphasizes the separate sources of equity risk, z1(t), and independent volatil-

ity risk, z2(t). An important aspect of our analysis will be the separate premia for these risks.

In this model, the instantaneous variance v(t) reverts to a long-run mean of � with a speed

of �. The expected future variance is a linear function of current variance

Et(v(t+�)) = exp
��� v(t) + (1� exp���)�: (6)

Most of the existing literature follows Heston (1993) and speci�es the following risk-neutral

dynamic

dS (t) = rS (t) dt+
p
v(t)S (t) dz�1(t); (7)

dv(t) = (�(� � v(t))� �v(t))dt+ �
p
v(t)(�dz�1(t) +

p
1� �2dz�2(t));

where z�1(t) and z
�
2(t) are independent Wiener processes under the risk-neutral measure. The

variance process is usually re-written as

dv(t) = (��(�� � v(t))dt+ �
p
v(t)(�dz�1(t) +

p
1� �2dz�2(t)); (8)

where �� = ��=(� + �) and �� = � + �. Therefore �� is the risk-neutral long-run variance, and
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�� is the risk-neutral mean reversion. The risk-neutral speci�cation depends on the separate

premium for volatility risk of the form �v(t). Note that this risk premium may be negative. Our

focus is on the components and empirical implications of this variance risk premium.

We begin the analysis by characterizing the stochastic discount factor M(t) underlying

this risk-neutralization. Proposition 1 expresses the stochastic discount factor in terms of the

parameters governing the dynamics of variance, �, �, �, and �, the equity premium �, and the

variance premium �.

Proposition 1 The unique stochastic discount factor inherent in equations (5) and (7) takes
the form

M(t) =M(0)

�
S (t)

S(0)

��
exp

�
�t+ �

Z t

0

v(s)ds+ �(v(t)� v(0))
�
; (9)

where

� = � (1 + �) r � ���;

� = ���+ 1
2
�+ ��� 1

2

�
�2 + 2����+ �2�2

�
;

� = ��� ���;

� =
���� �
�2(1� �2) :

Proof. See Appendix.
When variance is constant, (9) amounts to the familiar power utility from Rubinstein�s (1976)

and Brennan�s (1979) preference-based derivation of the Black-Scholes model. But the stochastic

discount factor also depends on the variance v(t).6 This has distinctive implications for option

valuation.

Several papers have noted the importance of the stochastic discount factor for pricing options.

Chernov and Ghysels (2000) emphasized that the risk-neutral speci�cation must be incompatible

with arbitrage. Bates (2006), Pan (2002), Liu, Pan, and Wang (2004), Broadie, Chernov, and

Johannes (2007), and Santa-Clara and Yan (2009) have incorporated increasingly complex model

features, with separate components in the stochastic discount factor for stochastic volatility and

jumps. The purpose of this paper is to derive distinctive implications for option values from

a comparatively simple stochastic discount factor. In particular, the stochastic discount factor

in equation (9) can explain a number of outstanding option anomalies, even in a single-factor

di¤usion model or a discrete model with Gaussian innovations.
6This could result, for instance, if v(t) governs the variance of aggregate production in a Cox-Ingersoll-Ross

(1985) model with non-logarithmic utility. It could also result from the model of Benzoni, Collin-Dufresne, and
Goldstein (2009) where uncertainty directly a¤ects preferences. Bakshi, Madan, and Panayotov (2009) relate it
to short-sale constraints.
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Proposition 1 mechanically illustrates the restrictions imposed on the parameters of the sto-

chastic discount factor (9) by the choice of physical dynamic (5) and the choice of risk premium

in (7). The risk-free rate r restricts the time-preference parameters � and �. The equity premium

parameter � determines the risk aversion parameter �, and the variance premium � determines

the variance preference �. It is therefore also instructive to re-arrange Proposition 1 to express

the equity premium � and variance premium � parameters in terms of the underlying preference

parameters � and �. This gives

� = ��� ���; (10)

� = ���� (1� �2)�2�
= ����� �2�:

This demonstrates that both the equity risk premium � and the variance risk premium � can

be thought of as having two distinct components originating in preferences. One is related to

the risk-aversion parameter � and the other one to the variance preference parameter �. We

can therefore use economic intuition to sign the equity premium and the variance premium. If

the stochastic discount factor is decreasing in the spot price, we have � < 0, because marginal

utility is a decreasing function of stock index returns. If hedging needs increase in times of

uncertainty then we anticipate the stochastic discount factor to be increasing in the volatility,

� > 0. Empirically the correlation between stock market returns and variance � is strongly

negative. Therefore from (10) the equity premium � must be positive. The variance premium �

has a component based on covariance with equity risk, and a separate independent component

based on the variance preference �. With a negative correlation �, we see that �must be negative.

It is critical to note that the conventional assumption on the risk-neutral dynamics of variance

(8) does not distinguish whether the variance risk premium emanates exclusively from � (and

therefore indirectly from the equity premium �) or whether it has an independent component

�. In other words, assuming � = 0 in (9) is consistent with a nonzero variance risk premium �,

as can be seen from (10). Therefore, when estimating option models with stochastic volatility

using both return data and option data, it is important to explicitly write down the pricing

kernel that provides the link between the physical dynamic (5) and the risk-neutral dynamic

(8). It is not su¢ cient to simply state that (7) holds for arbitrary (negative) �, because this

assumption is consistent with the stochastic discount factor (9) but also with the special case (9)

with � = 0, and the economic implications of those sets of assumptions are very di¤erent. This

paper explores the distinct implications of variance premiums � 6= 0 for option prices.
We will investigate the pricing implications of these alternative assumptions on the stochastic

discount factor below in the context of a discrete-time framework, which has similar intuition
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but is easier to implement. For now it is instructive to relate our framework to the empirical

�ndings in Section 2.5. If there is no independent component to the variance premium (� = 0),

the ratio of the risk-neutral stock price density to the true density will be linear with a slope of

� when plotted in log-log space. This corresponds to the conventional power utility assumption.

If there is an independent negative component to the variance premium (� > 0), the ratio of the

risk-neutral stock price density to the true density will be a U-shaped �smile�. In contrast if

� < 0 then this ratio will have a hump shaped �frown�. The evidence in Figure 4 in Section 2.5

therefore favors � > 0. We analyze this issue further below in the context of our discrete-time

framework.

Finally, note that the risk-neutral expected variance is obtained by inserting the risk-neutral

parameters of equation (8) into equation (6)

E�t (v(t+�)) = exp
���� v(t) + (1� exp����)��: (11)

Recall that the risk-neutral long-run variance �� = ��=(�+�) and the risk-neutral mean-reversion

�� = � + �. The variance premium a¤ects both quantities. Given that we know that � < 0;

the implications are that the risk-neutral expected variance will exceed the actual expected

variance, and that the risk-neutral mean-reversion will be smaller then than the physical mean

reversion. Hence a negative risk premium for variance explains not only why implied volatility

exceeds physical volatility, but also Stein�s (1989) �nding of overreaction of long-term options to

short-term �uctuations in volatility.

4 The Variance Risk Premium in Discrete Time

The objective of our empirical exercise is to investigate Bates� (1996b) observation that the

di¤erences between the physical and risk-neutral distribution are the achilles�heel of state-of-

the-art option valuation models, which still applies today. Estimation using option data only

and/or returns only can diagnose this problem, but it cannot assess a model�s ability to resolve

it. It is therefore critically important to estimate and evaluate models using loss functions that

include returns data as well as options data.

While it is feasible to do this using the Heston (1993) model in the previous section, or one of

its extensions, the computational complexity involved when implementing this model is very high.

While continuous-time models are often better suited to provide theoretical insights, discrete-

time models may be easier to estimate using daily data. This section introduces the variance-

dependent stochastic discount factor (9) into the Heston and Nandi (2000) GARCH model. This

generates an additional premium for variance risk analogous to similar to the premium in Heston�s
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(1993) square-root volatility model. The model mechanics can be empirically investigated using

either the continuous-time model in the previous section or the model below. We use the discrete-

time model because we present a rather computationally-intensive empirical exercise, and the

discrete model is easier to implement. One may interpret the GARCH model as either an

internally consistent discrete model or a daily approximation of the continuous-time model.

We begin with the Heston-Nandi (2000) physical GARCH process

ln(S (t)) = ln(S(t� 1)) + r + (�� 1
2
)h(t) +

p
h(t)z(t); (12)

h(t) = ! + �h(t� 1) + �(z(t� 1)� 
p
h(t� 1))2;

where r is the daily continuously compounded interest rate and z(t) has a standard normal

distribution. Heston and Nandi (2000) show this process is a discrete analog of the square-root

volatility process and can converge to the di¤usion process (5). We will implement this model

using daily data, and we are therefore interested in its predictions for a �xed daily interval.

Just as in the di¤usion model (5), the expected future variance is a linear function of current

variance

Et�1(h(t+ 1)) = (� + �
2)h(t) + (1� � � �2)E(h(t)); (13)

where E(h(t)) = (!+�)=(1����2). In words, the variance reverts to its long-run mean with
daily autocorrelation of � + �2. The conditional variance of the h(t) process is also linear in

past variance.

V art�1(h(t+ 1)) = 2�
2 + 4�22h(t): (14)

The parameter  determines the correlation of the variance h(t + 1) with stock returns R (t) =

ln(S(t)=S(t� 1)), via
Covt�1(R (t) ; h(t+ 1)) = �2�h(t) (15)

The data robustly indicate sizeable negative correlation, which means that  must be positive.

We can value securities in this discrete-time model using the same stochastic discount factor

(5) as the di¤usion model. Recall that in the di¤usion model, the variance process follows square-

root dynamics with di¤erent parameters in the physical and risk-neutral measures. Proposition

2 shows an analogous result in the discrete model�the risk-neutral process remains in the same

GARCH class.

Proposition 2 The risk-neutral stock price corresponding to the physical Heston-Nandi GARCH

16



process in (12) and the stochastic discount factor

M (t) =M (0)

�
S (t)

S (0)

��
exp

 
�t+ �

tX
s=1

h (s) + � (h (t+ 1)� h (1))
!

(16)

follows the GARCH process

ln(S (t)) = ln(S(t� 1)) + r � 1
2
h�(t) +

p
h�(t)z�(t); (17)

h�(t) = !� + �h�(t� 1) + ��(z�(t� 1)� �
p
h�(t� 1))2;

where z�(t) has a standard normal distribution and

h�(t) = h(t)= (1� 2��) ; (18)

!� = != (1� 2��) ;
�� = �= (1� 2��)2 ;

� =  � �:

Proof. See Appendix.
The risk-neutral dynamics di¤er from the physical dynamics through the e¤ect of the equity

premium parameter � and scaling factor (1� 2��). Conditional on the parameters characterizing
the physical dynamic, these risk-neutral dynamics are therefore implied by the values of the kernel

parameters � and � in equation (16).7 The intuition is similar to the continuous-time case in

Section 3, where the values of the equity premium and volatility risk premium parameters �

and � are implied by the values of the kernel parameters � and �. With an annual U.S. equity

premium �h(t) of around 8% and variance h(t) of 20%2, it can be inferred that the value of the

equity premium parameter � is small, around 2.

The Heston-Nandi (2000) model corresponds to the special case of � = 0. It can be seen

from (18) that the implications of this parameter are important because it in�uences the level,

persistence, and volatility of the variance. Note that a negative variance risk premium (� > 0)

implies that the risk-neutral variance h�(t) exceeds the physical variance h(t) in the empirically

relevant case where � > 0. The variance risk premium also a¤ects the risk-neutral drift of h�(t)

E�t�1(h
�(t+ 1)) = (� + ���2)h�(t) + (1� � � ���2)E�(h�(t)); (19)

where E�(h�(t)) = (!�+��)=(1� � ����2): The risk-neutral autocorrelation equals � +���2,
7The mapping between � and � is contained in the Appendix.
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and a positive equity premium increases the risk-neutral persistence as well as the level of the

future variance.

Comparison of physical parameters with risk-neutral parameters shows that if the correlation

between returns and variance is negative ( > 0), if the equity premium is positive (� > 0, which

corresponds to � < 0) and if the variance premium is negative (� > 0), then the risk-neutral

mean reversion will be smaller than the actual mean reversion. Finally, note that the variance

premium alters the conditional variance of the risk-neutral variance process

V ar�t�1(h
�(t+ 1)) = 2��2 + 4��2�2h�(t): (20)

If the correlation between returns and variance is negative ( > 0), the equity premium is

positive (� > 0), and the variance premium is negative (� > 0), then substituting the risk-

neutral parameters �� and � from (17) shows that risk-neutral variance of variance is greater

than the actual variance of variance. Furthermore we can de�ne the risk neutral conditional

covariance

Cov�t�1(R (t) ; h
�(t+ 1)) = �2���h�(t) (21)

The following corollary summarizes the results for this discrete-time model, which parallel

those of the continuous-time model.

Corollary 1 If the equity premium is positive (� > 0), the independent variance premium is

negative (� > 0), and variance is negatively correlated with stock returns ( > 0) then:

� The risk-neutral variance h�(t) exceeds the physical variance h(t),

� The risk-neutral expected future variance exceeds the physical expected future variance,

� The risk-neutral variance process is more persistent than the physical process, and

� The risk-neutral variance of variance exceeds the physical variance of variance.

The corollary summarizes how a risk premium for volatility can explain a number of puzzles

concerning the level and movement of implied option variance compared to observed time-series

variance. The �nal puzzle concerns the stylized fact pointed out by Bates (1996b), and more

recently by Broadie, Chernov, and Johannes (2007), that the physical and risk-neutral volatility

smiles di¤er, which corresponds to risk-neutral skewness and kurtosis exceeding physical skew-

ness and kurtosis. Our model captures this stylized fact through a U-shaped pricing kernel.

Interestingly, even though the stochastic discount factor is a monotonic function of the stock

price and variance (9), the projection of the stochastic discount factor onto the stock price alone

can have a U-shape. The following proposition formalizes this relationship.
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Corollary 2 The logarithm of the stochastic discount factor is a quadratic function of the stock

return.

ln

�
M (t)

M (t� 1)

�
=

��

h (t)
(R(t)� r)2 � (22)

� (R(t)� r) +
�
� + � (� � 1) + ��

�
�� 1

2
+ 
�2�

h (t) + � + �! + �r;

where R(t) = ln(S (t) =S(t� 1)).

In words, the pricing kernel is a parabolic curve when plotted in log-log space. Note that

whether this shape is a positive smile or a negative frown depends on the independent variance

premium �, not on the total variance premium. Due to the component of variance premium

that is correlated with equity risk, it is conceivable that the total variance premium could have

a di¤erent sign than the independent negative component. A negative independent variance

premium (� > 0) corresponds to the empirical smile shown in Figure 4. Thus the strong U-

shaped ratios in Figure 4 constitute a revealing diagnostic on the underlying preferences.

Corollary 3 When the independent variance premium is negative (� > 0), the pricing kernel

has a U-shape.

In summary, option values should re�ect an implied variance process that is larger, more

persistent, and more volatile than observed variance. Then the risk-neutral distribution will

have higher variance and fatter tails than the physical distribution. This increases the values of

all options, particularly long-term options and out-of-the-money options. A negative premium

for variance risk therefore explains a number of puzzles concerning the relationship between

physical volatility and volatilities implied from option prices.

Note that option valuation with this model is straightforward. Following Heston and Nandi

(2000), the value of a call option at time t with strike price X maturing at T is equal to

C(S (t) ; h (t+ 1) ; X; T ) = S (t)

�
1

2
+

Z 1

ln(X)

Re

�
X�i'g�t (i'+ 1)

i'

�
d'

�
(23)

�X exp�r(T�t)
�
1

2
+

Z 1

ln(X)

Re

�
X�i'g�t (i')

i'

�
d'

�
:

where g�t (:) is the conditional generating function for the risk neutral process (17). The functional

form for the physical gt(:) is provided in Heston and Nandi (2000). Together with the mapping

in (18) this yields g�t (:).
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5 Empirical Results

We now present an empirical investigation of the model outlined in Section 4. It is important

to realize that the model�s success in addressing some of the stylized facts we discuss in Section

2 can only be evaluated in an appropriately designed empirical experiment. Speci�cally, the

model�s ability to capture the di¤erences between the physical and risk-neutral distributions

requires �tting both distributions using the same, internally consistent set of parameters. Perhaps

somewhat surprisingly, in the stochastic volatility option pricing literature such an exercise has

only been attempted by a very limited number of studies. In order to understand the implications

of our empirical results, a brief summary of the existing empirical literature on index options is

therefore warranted.

While the theoretical literature on option valuation is grounded in an explicit description of

the link between the risk-neutral and physical distribution, much of the empirical literature on

index options studies the valuation of options without contemporaneously �tting the underlying

returns. In fact, it is possible to �t separate cross-section of options while side-stepping the

issue of return �t completely by parameterizing the volatility state variable.8 When estimating

multiple cross-sections, one can parameterize the volatility state variable in the same way, at the

cost of estimating a high number of parameters,9 or one can �lter the volatility from underlying

returns, using a variety of �lters. Some papers take into account returns through the �ltering

exercise, but do not explicitly take into account returns in the objective function.10 Eraker (2004)

and Jones (2003) conduct a Bayesian analysis based on options and return data. A few studies

take a frequentist approach using an objective function which contains an option data component

as well as a return data component. Chernov and Ghysels (2000) and Pan (2002) do this in a

method-of-moments framework, while Santa-Clara and Yan (2009) estimate parameters using a

likelihood which contains a returns component and an options component.

The literature also contains comparisons of the risk-neutral and physical distribution. Bates

(1996b) observes that parameters for stochastic volatility models estimated from option data

cannot �t returns. Eraker, Johannes, and Polson (2003) show the reverse. Broadie, Chernov,

and Johannes (2007) use parameters estimated from returns data, and subsequently estimate the

jump risk premia needed to price options.

Our empirical setup is most closely related to Santa-Clara and Yan (2009). We use a joint

likelihood consisting of an option-based component and a return-based component which is rel-

atively easy in discrete time. Note that the conditional density of the daily return is normal so

8See for instance the seminal paper by Bakshi, Cao and Chen (1997)
9See for instance Bates (2000), Christo¤ersen, Heston, and Jacobs (2009), and Huang and Wu (2004).
10See for instance Christo¤ersen and Jacobs (2004).
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that

f (R(t)jh(t)) = 1p
2�h(t)

exp

 
�(R(t)� r � �h(t))

2

2h(t)

!
:

The return log likelihood is therefore

lnLR _ �1
2

TX
t=1

�
ln (h(t)) + (R(t)� r � �h(t))2 =h(t)

	
: (24)

De�ne the Black-Scholes Vega (BSV) weighted option valuation errors as

"i =
�
CMkt
i � CMod

i

�
=BSV Mkt

i ;

where CMkt
i represents the market price of the ith option, CMod

i represents the model price, and

BSV Mkt
i represents the Black-Scholes vega of the option (the derivative with respect to volatility)

at the market implied level of volatility. Assume these disturbances are i.i.d. normal so that the

option log likelihood is

lnLO _ �1
2

NX
i=1

�
ln
�
s2"
�
+ "2i =s

2
"

	
: (25)

where we can concentrate out s2" using the sample analogue ŝ
2
" =

1
N

PN
i=1 "

2
i : These vega-weighted

option errors are very useful because it can be shown that they are an approximation to implied

volatility based errors, which have desirable statistical properties. Unlike implied volatility errors,

they do not require Black-Scholes inversion of model prices at every step in the optimization,

which is very costly in large scale empirical estimation exercises such as ours. See for instance

Carr and Wu (2007) and Trolle and Schwartz (2009) for applications of BSV Mkt weighted option

errors.

We can now solve the following optimization problem

max
�;��

lnLR + lnLO; (26)

where � = f!; �; �; ; �g denotes the physical parameters and �� denotes the risk-neutral para-
meters which are mapped from � using (18). The riskless rate r in (24) set to 5 percent, and we

use the term structure of interest rates from OptionMetrics when pricing options in (25).

To demonstrate the usefulness and implications of the stochastic discount factor (9), we

conduct four di¤erent empirical exercises. The �rst exercise is intended as a benchmark. We

maximize the joint log likelihood in (26) with respect to nine parameters: the �ve physical

parameters !; �; �; ; � as well as the four risk-neutral parameters !�; ��; ��; �. This exercise
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has no value from an economic perspective, it is merely a �tting exercise. We refer to it as the

ad-hoc model. Because there are no built-in restrictions between the physical and risk-neutral

parameters, we e¤ectively �t both the risk-neutral and physical distribution as well as possible,

which will serve as a benchmark for three other models which impose economic restrictions

between the physical and the risk-neutral distribution.

The �rst of the three models we consider contains no risk premia. This amounts to setting

� = 0 and � = 0, so that we have h� (t+ 1) = h (t+ 1) : The resulting model has only four free

parameters: !; �; �; and . The second model is the Heston-Nandi (2000) model that allows for

equity risk. This e¤ectively leaves the equity premium � (or equivalently the risk-aversion �)

as a free parameter, yielding �ve parameters in total. The most general economic model allows

both equity risk and independent volatility risk by allowing � to be a free parameter.

Table 3 presents the empirical results, which are quite striking.11 First, consider the likeli-

hood functions at the optimum for the four di¤erent models. Notice that at the optimum, the

contribution from the options part of the likelihood is equal in all four cases. This indicates

that the contribution of the option data to the likelihood is so important that the parameters

adjust to �t the option data as in the benchmark ad-hoc case, and by implication sacri�cing

some goodness of �t in the return component of the likelihood, which is in all cases smaller than

in the ad-hoc speci�cation. This occurs despite using a return sample, 1990-2005, which is longer

than the option sample, 1996-2004.

It is instructive to start by inspecting some of the properties of the ad-hoc model, which does

not impose restrictions across the physical and risk-neutral parameters. The resulting properties

are therefore entirely determined by the data, and serve as a useful benchmark for the three

other models. We observe four very important features. First, the average risk-neutral volatility

is much higher than the average physical volatility. This captures the �rst stylized fact discussed

in Section 1. Second, the risk-neutral variance persistence, 0.985, is higher than the physical

variance persistence, 0.962. This is the stylized fact underlying Stein�s overreaction regressions.

Third, the average annualized risk neutral volatility of variance in (20) is much larger than the

physical volatility of variance in (14). Fourth, (the absolute value of) the average of the risk

neutral leverage correlation de�ned as

Cov�t�1(R (t) ; h
�(t+ 1))p

h�(t)V ar�t�1(h
�(t+ 1))

=
�2���h�(t)p

h�(t) (2��2 + 4��2�2h�(t))

annualized and evaluated at h�(t) = E [h�(t)], exceeds its physical counterpart. The last two

empirical features are of course critical in ensuring that the risk-neutral distribution has fatter

11We impose !� = ! = 0 in estimation because the nonnegativity constraint is binding and it is a necessary
condition for positive variances.
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tails than the physical distribution.

The model without risk premia serves as another benchmark. The model�s physical prop-

erties are identical to its risk-neutral properties. Allowing a nonzero equity premium results

in a rather small increase in the total likelihood (from 55,366.1 to 55,368.4). Asymptotically,

twice the di¤erence in likelihood values has a chi-square distribution with one degree of freedom.

Therefore this improvement is statistically insigni�cant, it can be seen that in economic terms

the improvements are modest, as the risk-neutral average volatility, variance persistence, and

volatility of variance are not very di¤erent from their physical counterparts. While these quanti-

tative e¤ects are small, it is reassuring that qualitatively all e¤ects go in the expected direction,

as emphasized in Section 3. The risk-neutral volatility exceeds the physical volatility, the risk

neutral variance persistence is higher, and the risk-neutral tails are fatter.

When adding an independent source of volatility risk to the speci�cation, the likelihood

function improves spectacularly (from 55,368.4 to 55,485.5). Perhaps even more pertinently,

some of the model properties for the model with equity and volatility risk are very similar

to those of the ad-hoc model, which provides benchmark properties that are completely data-

driven. The reported parameter combination 1= (1� 2��) shows the ratio of the risk-neutral
variance h�(t) to the physical variance h(t). The di¤erence between the long-run physical and

risk neutral volatilities is almost exactly the same as in the ad-hoc model, and the physical

volatility of variance is a very good approximation of the ad-hoc benchmark. However, while

the physical leverage correlation is smaller (in absolute value) than the risk-neutral leverage

correlation, and even though the physical variance persistence is smaller than the risk-neutral

variance persistence, the di¤erence between the two persistence measures is not nearly large

enough. The model therefore explains only part of the Stein puzzle. To understand why, note

that the model�s parsimonious speci�cation forces the same parameters to capture a large number

of stylized facts. In maximizing the likelihood, the relative �t of these stylized facts is traded

o¤, and it is well-known that it is di¢ cult to precisely estimate the mean-reversion of highly

persistent processes. The procedure will put weight on capturing the second, third and fourth

moments, and Nelson and Foster (1994) show that the covariance between stock returns and

variance is particularly important in this regard. Adding components to the GARCH model

would have increased �exibility to �t these dynamics as in Christo¤ersen et al (2008).

Figure 5 further explores the models�performance in matching the physical and risk neutral

volatility of variance. It plots the square root of the risk-neutral V ar�t�1(h
�(t + 1)) and the

physical counterpart V art�1(h(t+ 1)) over time for the four speci�cations in Table 3. Note that

the internally consistent model with equity and volatility risk in the bottom left panel tracks

quite closely the ad-hoc model in the bottom right panel. The risk-neutral volatility of variance

exceeds its physical counterpart in both cases. In contrast, in the top two panels the models
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without volatility risk have virtually identical physical and risk-neutral volatility of variance.

Table 4 explores further the option valuation performance of the new model that allows for

equity and volatility risk by providing measures of the IV RMSE and Bias by moneyness and

maturity. The �rst row in each panel of Table 4 is marked �ERP and VRP�and reports the

IV RMSE and Bias corresponding to the parameters estimated in the column labeled �Equity

and Volatility Risk�in Table 3. The second row in Table 4 labeled �ERP only�uses the same

physical parameters as the �rst row but forces � = 0 so that only the equity risk premium (ERP)

remains. The third row in each panel labeled �No RP�further forces � = � = 0 thus eliminating

both risk premia but again keeping all other physical parameter values from the �rst two rows.

Comparing the �rst and second rows in Table 4 shows that the volatility risk premium o¤ers

a dramatic improvement in option �t�both in terms of IV RMSE and Bias. When comparing the

second and third rows we see that the equity risk premium plays a much smaller role in improving

option �t when comparing with a model with no risk premia. The parameterizations with no

volatility risk premia imply a strong positive bias implying that on average the models underprice

options when the volatility risk premium is excluded. This bias is virtually eliminated�and the

RMSE is radically improved�when the volatility risk premium is incorporated into the model.

6 Conclusion

We suggest a general pricing kernel for the purpose of index option valuation. Unlike the tra-

ditional Black-Scholes (1973) and Rubinstein (1976) pricing kernel, which is a function of the

index return only, we specify that the pricing kernel is also a function of the return variance.

Although the pricing kernel is speci�ed as monotonic in the index return, the projection of the

pricing kernel onto returns is U-shaped. This model feature is consistent with semi-parametric

evidence from returns and options which reveals that the conditional pricing kernel is U-shaped

in returns, and is relatively stable over time. We then demonstrate that this pricing kernel can

account for a number of puzzles in the option pricing literature, using a negative price of variance

risk.

We estimate a generalization of the Heston-Nandi (2000) option pricing model that incorpo-

rates the negative price of variance risk into the pricing kernel. In order to demonstrate that the

more general pricing kernel can reconcile the return distributions implicit in the time series of

returns and option prices, we implement the model by maximizing the sum of the return like-

lihood and a likelihood based on successive cross-sections of option prices. We benchmark the

model�s performance to an ad-hoc model that does not impose restrictions across the physical

and risk-neutral parameters. We �nd that the �t of the model with the new pricing kernel is

dramatically better than the �t resulting from the traditional pricing kernel, and that two im-
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portant di¤erences between physical and risk-neutral moments are very similar to the di¤erences

obtained for the ad-hoc model.

The results and empirical exercises in this paper can be generalized in a number of ways. First,

while di¤erent models may be needed, alternative loss functions may emphasize di¤erent moments

and therefore yield di¤erent results. Alternatively, it may prove interesting to investigate the

implications of more general pricing kernels for option valuation in the presence of richer return

dynamics, for instance with jumps in returns and/or volatility, or multiple volatility components.

Our results indicate that it is critical to evaluate such models using a loss function similar to the

one in this paper, with a return component as well as an option component. Two questions arise

in this regard: on the one hand, whether these models can improve option �t; on the other hand,

whether they can describe a richer link between the physical and risk-neutral distributions with

intuitively plausible prices of risk. Models that can reconcile the di¤erences between physical

and risk-neutral persistence, as well as physical and risk-neutral leverage correlation, would be

of particular interest.

7 Appendix

Proof of Proposition 1
We impose the condition that the product of any traded asset and the stochastic discount

factor is a martingale under the physical probability measure. Let B(t) be the risk-free bond

(dB(t)
B(t)

= rdt) and let U(t) be an asset that depends on the spot price, S (t), and the volatility,

v(t).

From (9) we get the dynamic of M(t)

log(M(t)) = log(M(0)) + � log(S (t))� � log(S(0)) + �t+ �
Z t

0

ds+ � [v(t)� v(0)] ;

This gives

d log(M) = �d log(S) + �dt+ �vdt+ �dv

=

�
�

�
r + �v � 1

2
v

�
+ � + �v + ��(� � v)

�
dt+�

�
p
v + ���

p
v
�
dz1 +

h
��
p
1� �2

p
v
i
dz2;

where we use the fact that d log(S) =
�
r + �v � 1

2
v
�
dt +

p
vdz1, which is obtained by applying

Itô�s lemma to equation (5). Note that we have suppressed dependence on t in the notation.
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Again by Itô�s lemma, we have

dM

M
=

�
�

�
r + �v � 1

2
v

�
+ � + �v + ��(� � v) + 1

2
�2v + ����v +

1

2
�2�2v

�
dt

+
�
�
p
v + ���

p
v
�
dz1 +

h
��
p
1� �2

p
v
i
dz2:

From the condition that B(t)M(t) is a martingale, i.e. its drift is equal to zero, we deduce the

restrictions on � and �.

�

�
r + �v � 1

2
v

�
+ � + �v + ��(� � v) + 1

2
�2v + ����v +

1

2
�2�2v = �r:

This must hold for v = 0 and for v = +1, giving the restrictions on � and �

� = � (1 + �) r � ���:

� = ���+ 1
2
�+ ��� 1

2

�
�2 + 2����+ �2�2

�
:

Similarly, from the condition that S (t)M(t) is a martingale, i.e. its drift is equal to zero, we

deduce a restriction on �. Using the fact that the drift of M is equal to �rMdt, we have

�v + (�+ ���) v = 0;

or equivalently � = ��� ���:
Finally, by equating the drift of U(t)M(t) to zero, we deduce the restriction on �

0 =

�
M

�
Ut + rSUS + �vSUS + �(� � v)Uv +

1

2
vS2USS + vS��USv (A1)

+
1

2
v�2Uvv

�
� rUM +Mv(�+ ���)(SUS + ��Uv) +M�v�

2(1� �2)Uv
�
dt:

Since U(t)
B(t)

is a martingale under the risk-neutral measure, we can also show that

�vUv + rU = Ut + rSUS + �(� � v)Uv +
1

2
vS2USS + vS��USv +

1

2
v�2Uvv: (A2)

Substituting (A2) into (A1) we get for the drift DUM

DUM = [M (�vUv + rU + �vSUS)� rUM
+Mv(�+ ���)(SUS + ��Uv) +M�v�

2(1� �2)Uv
�
dt

= 0:
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After simpli�cation and using the fact that �+ ��� = ��, we get

�vUv � �v��Uv + �v�2(1� �2)Uv = 0;

and therefore

� =
���� �
�2(1� �2) : (A3)

Using (A3) we also obtain

� =
��+ ���1�
(1� �2) :

Proof of Proposition 2
The discrete-time form of the stochastic discount factor (9) is

M (t) =M (0)

�
S (t)

S (0)

��
exp

 
�t+ �

tX
s=1

h (s) + � (h (t+ 1)� h (1))
!
; (A4)

and therefore

M (t)

M (t� 1) =
�

S (t)

S (t� 1)

��
exp (� + �h (t) + � (h (t+ 1)� h (t))) : (A5)

The summations in (A4) are equivalent to the integrals in the continuous-time form (9) under

the standard GARCH convention that variance is constant throughout the day, and changes

discretely overnight. We shall show that the stochastic discount factor in (A4) is consistent with

the Heston-Nandi GARCH dynamic (12) for the following parameter mapping

� = � (�+ 1) r � �! + 1
2
ln (1� 2��) ;

� = �
�
�� 1

2

�
�� ��2 + (1� �) � � (�� 2��)

2

2 (1� 2��) ;

� = �(�� 1
2
+ )(1� 2��) +  � 1

2
:

From the GARCH dynamic (12) we can write

S (t)

S (t� 1) = exp
�
r +

�
�� 1

2

�
h (t) +

p
h (t)z (t)

�
;

h (t+ 1)� h (t) = ! + (� � 1)h (t) + �
�
z (t)� 

p
h (t)

�2
:
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Substituting these into (A5) gives

M (t)

M (t� 1) = exp
�
�r + �

�
�� 1

2

�
h+ �

p
hz + � + �h+ �! + � (� � 1)h+ ��

�
z � 

p
h
�2�

where we have dropped the time subscripts for z and h. Expanding the square and collecting

terms gives

M (t)

M (t� 1) = exp
�
�r + � + �! +

�
�
�
�� 1

2

�
+ � + � (� � 1) + ��2

�
h+ [�� 2��]

p
hz + [��] z2

�
:

First, we use the fact that for any initial value h(t), the parameters must be consistent with

the Euler equation for the riskless asset.

Et�1

�
M (t)

M (t� 1)

�
= exp (�r) : (A6)

Note that

Et�1

�
M (t)

M (t� 1)

�
= exp

�
�r + � + �! +

�
�
�
�� 1

2

�
+ � + � (� � 1) + ��2

�
h
�

�E
�
exp

�
[�� 2��]

p
hz + [��] z2

��
:

We need the following result

E
�
exp

�
az2 + 2abz

��
= exp

�
�1
2
ln (1� 2a) + 2a2b2

1� 2a

�
:

For our application we have

a = ��;

b =

�
�� 2��
2��

�p
h;

and thus

2a2b2 = 2�2�2
�
�� 2��
2��

�2
h = 1

2
(�� 2��)2 h:

Therefore

E
�
exp

�
[�� 2��]

p
hz + ��z2

��
= exp

 
�1
2
ln (1� 2��) + (�� 2��)

2

2 (1� 2��) h
!
;
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and

Et�1

�
M (t)

M (t� 1)

�
= exp

 
�r + � + �! +

�
�
�
�� 1

2

�
+ � + � (� � 1) + ��2

�
h

�1
2
ln (1� 2��) + (��2��)2

2(1�2��) h

!
:

Rearranging and using (A6)

(�+ 1) r + � + �! � 1
2
ln (1� 2��) +

"
�
�
�� 1

2

�
+ � + � (� � 1) + ��2 + (�� 2��)

2

2 (1� 2��)

#
h = 0:

Therefore we must have

� = � (�+ 1) r � �! + 1
2
ln (1� 2��) ;

� = �
�
�� 1

2

�
�� ��2 + (1� �) � � (�� 2��)

2

2 (1� 2��) :

Now we use the Euler equation for the underlying index

Et�1

�
S (t)

S (t� 1)
M (t)

M (t� 1)

�
= 1:

First, note that S(t)
S(t�1)

M(t)
M(t�1) is equal to

M(t)
M(t�1) in (A5) with � is replaced by � + 1, thus we

can use the expression for Et�1
h

M(t)
M(t�1)

i
to write

Et�1

�
S (t)

S (t� 1)
M (t)

M (t� 1)

�
= exp

 
(�+ 1) r + � + �! +

�
(�+ 1)

�
�� 1

2

�
+ � + � (� � 1) + ��2

�
h

�1
2
ln (1� 2��) + (�+1�2��)2

2(1�2��) h

!
:

Taking logs, setting equal to zero and using the above solutions for � and � gives�
�� 1

2
+
1 + 2�� 4��
2 (1� 2��)

�
h = 0:

Solving this for � yields

� = �(�� 1
2
+ )(1� 2��) +  � 1

2
:

To �nd the risk-neutral dynamic, note that the risk-neutral density is proportional to the

physical density times the stochastic discount factor

f �t�1 (S(t)) =
ft�1(S(t))M(t)

Et�1(M(t))
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Tedious integration shows that z(t) is normally distributed under the risk-neutral measure, but

with a di¤erent mean and variance. This is a direct implication of the form of the pricing kernel.

It is therefore convenient to de�ne a standardized risk-neutral innovation

z�(t) =
p
1� 2��

�
z (t) + �+

��

1� 2��

�p
h(t): (A7)

The risk-neutral dynamics ((17) can then be derived by substituting the risk-neutral innovation

(A7) into the physical GARCH process (12).

Proof of Corollary 2
We want to show that the logarithm of the stochastic discount factor takes the following

quadratic form in the stock return

ln

�
M (t)

M (t� 1)

�
=

��

h (t)
(R(t)� r)2 � � (R(t)� r) +�

� + � (� � 1) + ��
�
�� 1

2
+ 
�2�

h (t) + � + �! + �r

where R(t) = ln(S (t) =S(t� 1)). First recall that

M (t)

M (t� 1) =
�

S (t)

S (t� 1)

��
exp (� + �h (t) + � (h (t+ 1)� h (t))) ; (A5)

and that

h (t+ 1)� h (t) = ! + (� � 1)h (t) + �
�
z (t)� 

p
h (t)

�2
:

We also have

R(t) = r +
�
�� 1

2

�
h (t) +

p
h (t)z (t)

so that

z (t) =
R(t)� r �

�
�� 1

2

�
h (t)p

h (t)
:

From this we get

ln

�
M (t)

M (t� 1)

�
= �R(t) + � + �h (t) + � (h (t+ 1)� h (t))

= �R(t) + � + �! + (� + � (� � 1))h (t) + ��
�
z (t)� 

p
h (t)

�2
= �R(t) + � + �! + (� + � (� � 1))h (t) + ��

h (t)

�
R(t)� r �

�
�� 1

2
+ 
�
h (t)

�2
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expanding the square and collecting terms yields

ln

�
M (t)

M (t� 1)

�
=

��

h (t)
(R(t)� r)2 +

�
�� 2��

�
�� 1

2
+ 
��
(R(t)� r)

+
�
� + � (� � 1) + ��

�
�� 1

2
+ 
�2�

h (t) + � + �! + �r

From the equation for � we have

�� 2��(�� 1
2
+ ) = ��

and the result obtains.
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Figure 1: Physical and Risk-Neutral Volatility on the S&P500. 1996-2004.
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Notes to Figure: The top panel plots the annualized standard deviation of the daily S&P500

return from 1996 through 2004. This volatility is �ltered through a GARCH process and is

a physical volatility. The bottom panel plots the daily di¤erence between the option-implied

(risk-neutral) and physical volatilities.
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Figure 2: Returns on Short Straddles. 1996-2004.
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Notes to Figure: The top panel plots the monthly index of a short straddle strategy (solid line)

and the S&P500 index (dashes) both normalized to 100 on January 1, 1996. The bottom panel

plots the monthly returns on the straddle strategy. Straddle returns are computed using the

nearest to at-the-money nearest to 30-day maturity call and put option on the third Friday of

every month, with payo¤s computed at maturity. The monthly index is computed starting with

$100 in cash, and keeping track of the cash account, with the cash account earning the risk-free

rate.
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Figure 3: Physical and Risk-Neutral One-Month Conditional Densities
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Notes to Figure: We plot physical (dashed line) and risk-neutral (solid line) conditional densities.

The risk-neutral conditional density is obtained using the �rst Wednesday of option data for each

of the nine years in our sample. For each Wednesday, a polynomial is �tted to the data, and

the density is obtained from the polynomial �t using the method of Breeden and Litzenberger

(1978). To construct the physical conditional density, we use returns for 1990-2004, scale the

time series by the Wednesday�s conditional volatility, and use a normal kernel. On the horizontal

axis are annualized returns in percent.

39



Figure 4: Log Ratios of Risk-Neutral and Physical One-Month Densities
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Notes to Figure: We plot the natural logarithm of the ratio of the risk-neutral and physical

conditional densities. For each year in the option sample, we plot the ratios for each of the

Wednesdays in that year. On the X-axis are annualized returns in percent.
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Figure 5: Volatility of Variance, Annualized, 1996-2004.
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Notes to Figure: We plot the annualized square root of the conditional variance of variance

under the physical measure in solid lines and under the risk neutral measure in dashed lines.

The parameters used are reported in Table 3.
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1990-2005 1996-2004
Mean 7.77 7.52
St. Deviation 16.08 19.01
Skewness -0.102 -0.094
Kurtosis 6.786 5.696

F/X<0.96 .96<F/X<.98 .98<F/X<1.02 1.02<F/X<1.04 1.04<F/X<1.06 F/X>1.06 All
Number of Contracts 3,118 1,925 5,688 2,498 1,979 6,183 21,391
Average IV 19.31 18.88 19.71 21.21 22.04 24.91 21.47
Average Price 24.02 27.58 35.28 31.34 28.42 23.40 28.42
Average Spread 1.39 1.40 1.57 1.44 1.35 1.29 1.41

DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<180 DTM>180 All
Number of Contracts 1,069 5,717 3,996 1,726 3,253 5,630 21,391
Average IV 21.04 21.17 21.69 21.78 21.68 21.49 21.47

Table 1: Returns and Options Data

Panel B. Option Data by Moneyness

Panel C. Option Data by Maturity

Panel A: Return Characteristics (Annualized)

Average Price 12.58 17.49 23.61 26.34 31.81 44.62 28.42
Average Spread 0.87 1.14 1.36 1.44 1.53 1.76 1.41

Notes: We present descriptive statistics for daily return data from January 1, 1990 to December 31, 2005, as well as for daily return data from 
January 1, 1996 to December 31, 2004. We use Wednesday closing OTM options contracts from January 1, 1996 to December 31, 2004.



Sample Period Coefficient Standard Error t-Statistic

Full Sample -0.241 0.0091 -26.42

1996 -0.358 0.0284 -12.58

1997 -0.195 0.0269 -7.24

1998 -0.298 0.0410 -7.26

1999 -0.311 0.0169 -18.41

2000 -0.211 0.0141 -15.00

2001 -0.211 0.0241 -8.76

2002 -0.167 0.0274 -6.08

2003 -0.231 0.0203 -11.34

2004 -0.364 0.0207 -17.60

Table 2: Stein Regression of Overreaction

Notes: Using 1996-2004 option data, we run the forecasting regressions from Stein (1989, p. 
1021). We use at-the-money, fixed-maturity options obtained by fitting a polynomial in maturity 
and moneyness on every day in the option sample. As in Stein (1989) we use 1-month maturity 
for short-term options and 2-month maturity for long-term options.  We run the regressions for 
the full sample as well as for each year in the sample separately. 



Equity and Ad Hoc
No Risk Premium Equity Risk Only Volatility Risk Specification

Physical Parameters ω 0 0 0 0
α 3.248E-06 3.249E-06 1.546E-06 3.452E-06
β 0.826 0.826 0.826 0.875
γ 220.9 219.4 318.5 158.7
μ 0 1.501 1.543 1.954

RN Parameters 1/(1−2αξ) 1 1 1.2039
ω∗ 0 0 0 0
α∗ 3.248E-06 3.249E-06 3.248E-06 3.248E-06
β∗ 0.826 0.826 0.826 0.826
γ∗ 220.93 220.93 220.78 220.93

Likelihood Total 55,366.1 55,368.4 55,485.5 55,512.2
   From returns 13,188.3 13,190.6 13,307.7 13,334.4

From options 42 177 8 42 177 8 42 177 8 42 177 8

Table 3: Parameter Estimation and Model Fit. Joint Estimation using Returns and Options.

   From options 42,177.8 42,177.8 42,177.8 42,177.8

Physical Properties Long run volatility 0.234 0.219 0.153 0.151
Daily autocorrelation, h(t) 0.985 0.983 0.983 0.962
Annualized volatility of h(t) 0.087 0.081 0.039 0.046
Corrrelation(R(t),h(t+1)) -0.977 -0.974 -0.974 -0.905

RN Properties Long run volatility 0.234 0.234 0.232 0.234
Daily autocorrelation, h*(t) 0.985 0.985 0.985 0.985
Annualized volatility of h*(t) 0.087 0.087 0.086 0.087
Corrrelation(R(t),h*(t+1)) -0.977 -0.977 -0.977 -0.977

Notes: Parameter estimates are obtained by optimizing an joint likelihood on returns and options. Parameters as well as autocorrelations are daily. 
The returns and option samples are described in Table 1. For each model, we report the total likelihood value at the optimum as well as the value 
of the returns component at the optimum and the option component at the optimum. We estimate four models. In the "Ad Hoc Specification" the 
physical and risk-neutral parameters are not linked. This model has nine parameters. The "No Risk Premium Model" has four parameters, with 
μ=0 and ξ=0. The model with "Equity Risk Only" has five parameters. It imposes ξ=0. The model with "Equity and Volatility Risk" has six 
parameters, and estimates μ and ξ. A parameters are constrained to be positive which is a sufficient condition for positive variance.    



Model F/X<0.96 .96<F/X<.98 .98<F/X<1.02 1.02<F/X<1.04 1.04<F/X<1.06 F/X>1.06 All
ERP and VRP 2.9741 3.1391 3.1399 3.2364 3.2766 3.8717 3.3685

ERP only 4.8723 4.7336 5.1241 5.6927 5.9226 6.7394 5.7111
No RP 5.2882 5.1320 5.5185 6.0926 6.3163 7.1125 6.0986

Model F/X<0.96 .96<F/X<.98 .98<F/X<1.02 1.02<F/X<1.04 1.04<F/X<1.06 F/X>1.06 All
ERP and VRP -0.6011 -0.7463 -0.3734 0.1899 0.4802 1.3824 0.2121

ERP only 4.1721 3.7105 4.0581 4.7634 5.0777 5.9468 4.7661
No RP 4.6481 4.1875 4.5256 5.2185 5.5214 6.3695 5.2190

Model DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<180 DTM>180 All
ERP and VRP 3.3513 3.4181 3.4614 2.9799 3.4059 3.3447 3.3685

ERP only 4.7976 5.4619 5.8224 5.6526 5.8944 5.9440 5.7111
No RP 5.0606 5.7668 6.1823 6.0429 6.3122 6.4292 6.0986

Table 4: IV RMSE and Bias (%) by Moneyness and Maturity. 1996-2004.

Panel B. IV Bias by Moneyness (Data Less Model)

Panel A. IV RMSE by Moneyness

Panel C. IV RMSE by Maturity

No RP 5.0606 5.7668 6.1823 6.0429 6.3122 6.4292 6.0986

Model DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<180 DTM>180 All
ERP and VRP 0.1206 0.7148 0.5890 0.4085 0.0273 -0.5019 0.2121

ERP only 3.7334 4.4842 4.8342 4.9162 4.9451 5.0505 4.7661
No RP 4.0889 4.8651 5.2597 5.3583 5.4299 5.5997 5.2190

Notes: We report option implied volatility based RMSE and bias by moneyness and maturity using the parameter estimates from the column 
labeled "Equity and Volatility Risk" in Table 3. ERP denotes Equity Risk Premium and VRP denotes Volatility Risk Premium. In the row labeled 
"ERP only" we force the volatility risk premium to be zero and in the row labeled "No RP" we force both the volatility and the equity risk premium 
to be zero. The physical parameters are the same in all three rows.

Panel D. IV Bias by Maturity (Data Less Model)


	CHJ3_Tables_12Jan2010.pdf
	DescrStats
	stein
	Parameters
	Model Fit


